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(¢S L PRICING BARRIER OPTIONS VIA PDE APPROACH

The time-dependent constant elasticity of variance (CEV) model is a one-dimensional
diffusion process that solves a stochastic differential equation

dSe = u(t)Sedt + o (£)SP AW, Si—g = So. (1)
Here t > 0 is the time, S; is the stochastic stock price, (t) is the drift, o(t) is the

volatility and B is the elasticity parameter such that g < 1, g # {0, —1}!, W, is the
standard Brownian motion.

In case B = 0 this model is the Black-Scholes model, while for = —1 this is the
Bachelier, or time-dependent Ornstein-Uhlenbeck (OU) model.
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This equation should be solved subject to the terminal condition at the option maturity
t=T

C(T,$)=(S—K)T, (3)
where K is the option strike, and the boundary conditions
C(t,0)=0,  C(t H(t)) =0, (4)

where H(t) is the upper barrier, perhaps time-dependent.

In case B = 0 this model is the Black-Scholes model, while for = —1 this is the
Bachelier, or time-dependent Ornstein-Uhlenbeck (OU) model.



(¢ SV LEIE REDUCTION TO A BESSEL PDE

Proposition
The PDE in Eq.(2) can be transformed to

du 10%u  bau

ot 202 Tzaz )
where b is some constant, u = u(T, z) is the new dependent variable, and (7, z) are the
new independent variables. The Eq.(5) is the PDE associated with the one-dimensional
Bessel process, [Reviz and Yor 1999]

b
dX; = dW; + —dt. (6)
Xt
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where b is some constant, u = u(T, z) is the new dependent variable, and (7, z) are the
new independent variables. The Eq.(5) is the PDE associated with the one-dimensional
Bessel process, [ ]

b
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One note:

» Carr and Linetsky in [ ] extend the time-dependent CEV
model considered in this paper by allowing a jump to zero. They also reduce their
stock price process to a time homogeneous Bessel process.



As far as the terminal (now the initial ) condition in Eq.(3) and the boundary conditions
in Eq.(4) in the new variables is concerned, we must distinguish two cases, which are
determined by the sign of .
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(e[S LI BOUNDARY CONDITIONS

As far as the terminal (now the initial ) condition in Eq.(3) and the boundary conditions
in Eq.(4) in the new variables is concerned, we must distinguish two cases, which are
determined by the sign of .

@ If -1 < B < 0, the domain of definition for z is z € [0, y(7)], where y(7) can
be explicitly represented in terms of the parameters u(t), o(t), p and the barrier
H(t).
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@ However, if 0 < B < 1, the left boundary goes to —co. In this case we obtain the
problem in the half-plane [y(7), o):

du(t,z) 1 0%u(t, 2) bau(t, 2)

ot 2 0z2 u dz '

u(0,z) = f(z), y(0) < z < o0,

(8)

u(t, z) =0, u(t,y(1)) = 0.

zZ—00



The time-dependent version of the CIR model can be defined as a solution of the
following SDE:

dre = x(t)[0(t) — re]dt + o(t)\/redW, re—g = r. 9)
Here x(t) > 0 is the mean-reversion speed, and 0(t) is the mean-reversion level.
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Let us consider a Down-and-Out barrier Call option written on a ZCB as an underlying.
Under a risk-neutral measure the option price C(t, r) solves the following PDE,
[Andersen and Piterbarg 2010] .
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The terminal condition at the option maturity T < S for this PDE reads
C(T,r)=(F(r,T,S)—K)*", (11)
where K is the option strike, F(r, t,S) is the ZCB price, and S is the bond expiration.
The boundary condition is
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Since the CIR model belongs to the class of exponentially affine models, the price of

the ZCB F(r, t,S) for this model is known in closed form. Thus, this condition can be
translated into the r domain (r = L(t)).

The second boundary can be naturally set at r — c0. As at r — co the ZCB price tends
to zero, the Call option price also vanishes in this limit.
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Proposition
The Eq.(10) can be transformed to
du 10%u bou
il Rttt 1
T 2822+zaz' (13)
where b is some constant, u = u(T, z) is the new dependent variable, and
(T, z) are the new independent variables, if

k(t)0(t) m
20 2 &

where m € [0, 00) is some constant.

Two notes:

» The transformation for the time-dependent CIR model from Eq.(10) to Eq.(13)
cannot be done unconditionally.

» However, from practitioners’ points of view the condition Eq.(14) seems not to be
too restrictive. Since m is an arbitrary constant, it could be calibrated to the mar-
ket data together with x(t) and o(t). Therefore, in this form the model should be
capable for calibration to the term-structure of interest rates.



The method of Bessel Potentials

We start the exposition of the method of Bessel potentials for the problem in the
half-plane [y(7), o).
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[Lawler 2018; Linetsky and Mendoza 2010] , that in case b > 1/2 the density g-(z,C, b) is
a good density with no defect of mass, i.e., it integrates into 1.
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[Lawler 2018; Linetsky and Mendoza 2010] , that in case b > 1/2 the density g-(z,C, b) is
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representation reads, [Cox 1975; Emanuel and Macbeth 1982]

ge(z.0.b) = Y2£ (g)be’?fz/bl/z (%). (16)

T z T

Here I, (x) is the modified Bessel function of the first kind, [Abramowitz and Stegun 1964]



The method of Bessel Potentials

The function g(x, T) solves the problem with zero initial condition:
9q(t,z)  190%q(t,z) , baq(t,2)
ot 2 022 'z oz
q(0,z) =0, y(0) < z < o0,

=0, q(t,y(1) =¢(7),

o(r) = - /y Z) 4(0,)gx(y ()., b)d{.

(17)

q(t. 2)
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Therefore, following the general idea of the method of heat potentials, we represent

the solution in the form of a generalized potential for the Bessel PDE

q(t,2) = /OT‘I’(k)a% {T\/Z?k (g)be;?:iz) lb-1/2 (TZ(:k)]

where ¥ (k) is the potential density.

dk,
¢y (k)
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Therefore, following the general idea of the method of heat potentials, we represent

(17)

q(t, z)

the solution in the form of a generalized potential for the Bessel PDE

o= [ [ 25 () FEan(2)

where ¥ (k) is the potential density.

dk,  (18)
c—y(k)

It can be seen that g(7, z) solves Eq.(13) as the derivative of the integral on the upper
limit is proportional to the Delta function which vanishes due to z # y(7). The solution
in Eq.(18) also satisfies the initial condition at T = 0, and the vanishing condition at

z — o0,



WL R T T SRR R ST LET B VOLTERRA INTEGRAL EQUATION

At the barrier z = y(7) function q(7, z) is discontinuous. Following a similar approach
for the heat potentials method, [Tikhonov and Samarskii 1963] ), it can be shown that the
limiting value of g(7,z) at z = y(7) + 0 is equal to ¢(7):

o(t) =¥(1)+ (19)

b y2(0)+y2(k T
N T(k)aya(k) [ yT(T_)i(k) (y(k)> = (Y()_yik))] dk.

0 y(7)
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+ W | () T e (50 )]"k'

The Eq.(19) is a linear Volterra equations of the second kind, [Polyanin and Manzhirov
2008] . Since ¢(7) is a continuously differentiable function, Eq.(19) has a unique
continuous solution for ¥ (7). The Volterra equation can be efficiently solved either
numerically or semi-analytically, see [Itkin and Muravey 2020] for the discussion on
various approaches to solving this type of equations.
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The Eq.(19) is a linear Volterra equations of the second kind, [Polyanin and Manzhirov
2008] . Since ¢(7) is a continuously differentiable function, Eq.(19) has a unique
continuous solution for ¥ (7). The Volterra equation can be efficiently solved either
numerically or semi-analytically, see [Itkin and Muravey 2020] for the discussion on
various approaches to solving this type of equations.

Once Eq.(19) is solved and the function ¥ (7) is found, the final solution reads

= = b 2423k Z
U(T,Z):/O ‘P(k)ay‘zk) [ Tf(lf) (y(zk)) B 2<rk(>)lb1/2(7y(k2)} dk  (20)

+/ u(0,2) (2, 2, b)dZ.
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BP method in the curvilinear strip domain

Consider now the problem in the domain [0, y(7)]. The construction of the solution is
similar to the presented above. Again, in order to obtain a PDE with a homogeneous
initial condition, we represent the solution in the form

(
(2.2) = a(0.2) —o®) + [ u(0.D)ae(z.T,5)dL, ey

(0)
Go(1) == [ u(0.0)q:(0., )z,

21/27b€2b

q:(0,g, b) = me =,

where ( T'(x) is the Euler Gamma function, [Abramowitz and Stegun 1964] ). The method
to construct q(, z) is fully analogical to the previous section.
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similar to the presented above. Again, in order to obtain a PDE with a homogeneous
initial condition, we represent the solution in the form

(1,2) = a(r.2) ~co(r) + [ v(0.2)4c(2.8.6)dC, (21)
)
co() =~ [ u(0.0)ar(0.2,)ot.

51/2—b72b 2
4e(0.0,6) = ap o e &,
Th+1/21 (b+ )
where ( I'(x) is the Euler Gamma function, [Abramowitz and Stegun 1964] ). The method
to construct q(, z) is fully analogical to the previous section.

The double barrier options can also be priced via the BP method. This problem
corresponds to the domain [y (), h(7)]. For doing so, we have to use the so-called
double layer potentials:

u(r,2) = 4y (1, 2) + ap(T. 2 +/ u(0,8)qx (2,2, b)dz. (22)

However, for this case there are two unknown potentlal density functions ¥(7) and
®(7) defined as a solution to a system of Volterra equation. For more details, see [Carr,
Itkin, and Muravey 2020] .
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Generalized Integral Transform [elRg

In this section we describe the method of Generalized integral transform(GIT). We
consider the problem in the curvilinear strip [0, y(7)]. This problem emerges when we
consider the CEV process with B < 0. Since the Laplace transform of Eq.(13) with
time-homogeneous coefficients gives rise to the Bessel ODE, [Abramowitz and Stegun
1964] , it would be natural seeking for the general integral transform in the class of
Bessel functions.
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a(t, p) :/ 2 u(T, z)J)y|(2p)dz, (23)
0
where p = a+iw is a complex number, J,(x) is the Bessel function of the first kind,
and v =1/(2B) <0, since f < 0.
Next, let us multiply both parts of Eq.(13) by z”*le(zp) and integrate on z from 0 to

y(T). In the result we obtain the following Cauchy problem for @ (the unknown function
¥ (1) should also be found):

#ﬁ:p) — % [_pQQ(T, p) +yu+1(r)JM(y(r)p)‘lf(r)] : (24)
(©) )
a(p.0) = [ 2 () w021, ¥ =]
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Generalized Integral Transform [elRg

In this section we describe the method of Generalized integral transform(GIT). We
consider the problem in the curvilinear strip [0, y(7)]. This problem emerges when we
consider the CEV process with B < 0. Since the Laplace transform of Eq.(13) with
time-homogeneous coefficients gives rise to the Bessel ODE, [Abramowitz and Stegun
1964] , it would be natural seeking for the general integral transform in the class of
Bessel functions. We introduce the GIT of the form

y(® g
a(t, p) :/ 2 u(T, z)J)y|(2p)dz, (23)
0
where p = a+iw is a complex number, J,(x) is the Bessel function of the first kind,
and v =1/(2B) <0, since f < 0.
Next, let us multiply both parts of Eq.(13) by z”*le(zp) and integrate on z from 0 to

y(T). In the result we obtain the following Cauchy problem for @ (the unknown function
¥ (7) should also be found):

dia(t,p) 1 _
=B = 2 [Pt p) + T (@ Iy (DR E ()] (24)
_ y(0) ¥ du
i(p,0) = /0 z +1J‘V| (zp) u(0,z)dz, ¥(7) = e I
The solution of this problem reads
a= 72 a(0.p)+ 3 [T A O bR (29)
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Generalized Integral Transform CONNECTION TO HANKEL TRANSFORM

Note that if y(7) = 0 the integral transform Eq.(23) is the well known Hankel transform
[Bateman and Erdélyi 1953] :

utr,) =2 [~ paen) | [ € @outr, )] oo (26)
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Simplifications in the case y(7) = 0:

@ The function ¥ is equal to zero, therefore the Cauchy problem Eq.(24) can be
solved explicitly. The inversion formula is known.
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@ The function ¥ is equal to zero, therefore the Cauchy problem Eq.(24) can be
solved explicitly. The inversion formula is known.

The problems arising when using the GIT Eq.(23):

» Problem 1. We have to derive the inversion formula.
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» Problem 2. We need to find the function Y.
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Note that if y(7) = 0 the integral transform Eq.(23) is the well known Hankel transform
[Bateman and Erdélyi 1953] :
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Simplifications in the case y(7) = 0:

@ The function ¥ is equal to zero, therefore the Cauchy problem Eq.(24) can be
solved explicitly. The inversion formula is known.
The problems arising when using the GIT Eq.(23):
» Problem 1. We have to derive the inversion formula.
» Problem 2. We need to find the function Y.

Once these issues are resolved, we obtain a semi-analytical solution to the problem of
pricing Up-and-Out barrier Call options for the CEV model with g < 0.
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[Bateman and Erdélyi 1953] :
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Simplifications in the case y(7) = 0:

@ The function ¥ is equal to zero, therefore the Cauchy problem Eq.(24) can be
solved explicitly. The inversion formula is known.
The problems arising when using the GIT Eq.(23):
» Problem 1. We have to derive the inversion formula.
» Problem 2. We need to find the function ¥.
Once these issues are resolved, we obtain a semi-analytical solution to the problem of
pricing Up-and-Out barrier Call options for the CEV model with g < 0.

» The function ¥(7) can be found as a solution to the Volterra integral equation of
the second kind, for more details see [Carr, Itkin, and Muravey 2020] .
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Note that if y(7) = 0 the integral transform Eq.(23) is the well known Hankel transform
[Bateman and Erdélyi 1953] :

(o] {ee]
utr, ) =2 [ pien) | [ @)ut 0] oo (26)
Simplifications in the case y(7) = 0:
@ The function ¥ is equal to zero, therefore the Cauchy problem Eq.(24) can be
solved explicitly. The inversion formula is known.
The problems arising when using the GIT Eq.(23):
» Problem 1. We have to derive the inversion formula.
» Problem 2. We need to find the function ¥.
Once these issues are resolved, we obtain a semi-analytical solution to the problem of
pricing Up-and-Out barrier Call options for the CEV model with g < 0.
» The function ¥(7) can be found as a solution to the Volterra integral equation of
the second kind, for more details see [Carr, Itkin, and Muravey 2020] .
» To build the inverse transform we are looking for the function u(t, z) in the form :
[ee]
_ UnZ )
u(t,z)=z" an(T)J, SE ) 27
(.2 == 3 an(rhy (15 @27)
Here 11, is an ordered sequence of the positive zeros of the Bessel function Jj, (11):

J\y|(ﬂn) = J\ﬂ(}lm) =0, Un>pm>0, n>m.
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[EGEE PR IEEE (I EL S SOLUTION TO THE ORIGINAL PROBLEM

Note, that the definition in Eq.(27) automatically respects the vanishing boundary
conditions for u(T, z). We assume that this series converges absolutely and uniformly
Vz € [0, y(7)] for any T > 0.

Applying the direct integral transform in Eq.(23) to both parts of Eq.(27), and using a
change of variables z — 2 = zy(7) yields

a(t, p = 4 . R
= L a(r) [} 24 (o) Jy (v () (28)
The set of functions Jj, (x2) with & € pip, n=1,..., forms an orthogonal basis in the

space C|0, 1] with the scalar product

1 zJy, (az)dp, (Bz)dz 1 =
vl V] . a=p,
Jy(az), J z)) = 2/ { 29
(vt (22). y (B2)) Jyj1(@)Jyj+1(B) 0, a#p (@)
Therefore, the explicit formula for each coefficient a,(7) is straightforward
i (T, pn/y(1))
an(T) =25 —~5——=. (30)
@)L, ()
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Generalized Integral Transform SOLUTION TO THE ORIGINAL PROBLEM

Then the final solution for u(T, z) reads

v & po vi1_- 4= I s/ y (D) )y (Hnz/ y (7))
u(t,z) = 2y2(T) ,,;1 {/0 u(0,s)s" e 220 J|21,‘+1(Hn)
107 5 (v=s) Iy (Hny (5)/y (2)) | (2 / ¥ (7))
+ 2/0 YT (s)¥(s)e @ o) ds
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Generalized Integral Transform SOLUTION TO THE ORIGINAL PROBLEM

Then the final solution for u(T, z) reads

—v 0

2 | (s /y (7)) Jy) (nz/y (7))

(0)
u(t,z) =2 22('() nzl L/Oy u(0,s)s" T le” 2@

Y = |v\+1(F‘")

1T, 5 (v=s) Iy (Hny (5)/y (2)) | (2 / ¥ (7))
+5 [ Y6 o 7ol

To obtain the equation for ¥, one needs to differentiate Eq.(31) on z, and then let

z=y(7). This yields

3+1/

¥(7) = y (un+v) [/Oy(O) u(0,s)s vtlg Mds

Jvj+1(n)

n:l

+%/Ty”+1(s)‘lf(s 252 Iy (9/y(@)

Zy2
JM—H( n)
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Generalized Integral Transform SOLUTION TO THE ORIGINAL PROBLEM

Then the final solution for u(T, z) reads

—v 0

2 | (s /y (7)) Jy) (nz/y (7))

(0)
u(t,z) =2 22(*() nzl L/Oy u(0,s)s" T le” 2@

Y = |v\+1(V")

L7 g, 5 (9) J| (ny (s)/y (7)) | (1nz/ y(T))
e i

To obtain the equation for ¥, one needs to differentiate Eq.(31) on z, and then let

z=y(7). This yields

ds

ds

(31)

(32)

(33)

o0 ¥(0) 245y (#ns/y (1))
Y(7) = +v {/ u(0,s)s" e ) —————~—ds
(1) = 3+1/ n:l (n 0 (0, 5)s J|v‘+1(}ln)
1 /T _ #B(a-s) J‘V‘(,‘l/ln}/(S)/Y(T))
e 7/ yV+1(s)‘If s)e 2y2(7) —d5:|
2 Jo (s) Sy (pn)
Note: The function ¥(7) can also be found by solving the following Fredholm
equation:
/ —)Lzs/Z\I](s) VHL(8) 1, (y(s)A) ds = _2/ q" 1, (gA) u(0, g)dgq.
0
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Generalized Integral Transform THE HALF-PLANE DOMAIN

The problem in half-plane domain [y(7), o) can be solved via the Weber—Orr transform

a(t,p) = /y:i) 2FIW(t, p, z)u(t, 2)dz (34)

u(t,z) = 27" /:’ %a(r, .

The kernel W (a, b) and the function V/(p) are defined as follows, [Bateman and Erdélyi
1953]

W(t, a,b) = Jp, (ab) Y}y (ay (7)) — Yy (ab)Jjy| (ay (7)), (35)
V(T,p) = 2 (py (7)) + Yy *(py (7).
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The problem in half-plane domain [y(7), o) can be solved via the Weber—Orr transform

(T, p) = /y:i) 2 W (z, p, 2)u(T, 2)dz (34)

u(t,z) = 27" /:’ %a(r, .

The kernel W (a, b) and the function V/(p) are defined as follows, [Bateman and Erdélyi
1953]

W(t, a, b) = Jj (ab) Y, (ay(T)) — Y}y (ab)Jjy (ay (7)), (35)
V(t,p) = Jjy /2 (py (7)) + Y * (py (7).

The Webber—Orr transform is a generalization of the Hankel transform to the interval
[a, ).

The functions W (7, a, b) as the functions of the second argument a also form an
orthogonal basis in the space C[y(T), o) for all T > 0. and the functions J, (xp) form
an orthogonal basis in the space C[0, o).
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The problem in half-plane domain [y(7), o) can be solved via the Weber—Orr transform

(T, p) = /yi) 2 W(t, p, 2)u(T, 2)dz (34)

v [ pW(T,p 2)
u(t,z) =z /0 Vitp) a(t, p)dp.
The kernel W (a, b) and the function V/(p) are defined as follows, [Bateman and Erdélyi
1953]

W(t, a, b) = J,|(ab) Y}y (ay(T)) = Yy (ab)Jjy (ay(T)). (35)
V(t,p) = Jjy /2 (py (7)) + Y * (py (7).

The Webber—Orr transform is a generalization of the Hankel transform to the interval
[a, ).

The functions W (7, a, b) as the functions of the second argument a also form an
orthogonal basis in the space C[y(7), o) for all T > 0. and the functions J,(xp) form
an orthogonal basis in the space C[0, o).

The definitions in Eq.(35) are generalizations of the Pythagorean and Angle sum

identities for trigonometric functions to the case of cylinder functions J,| and Y/,|.
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The problem in half-plane domain [y(7), o) can be solved via the Weber—Orr transform

a(t,p) = /y:i) 2"FYW(t, p, z)u(t, 2)dz (34)

u(t,z)=z" /:O %U(t p)dp.

The kernel W (a, b) and the function V/(p) are defined as follows, [Bateman and Erdélyi
1953

W(t, a b) = 4y, (ab) Y}, (ay (1)) — Y}, (ab) Iy (ay (7)), (35)
V(7,p) = J* (py (7)) + Yy * (py (7).

The Webber—Orr transform is a generalization of the Hankel transform to the interval
[a, ).

The functions W (7, a, b) as the functions of the second argument a also form an
orthogonal basis in the space C[y(7), o) for all T > 0. and the functions J,(xp) form

an orthogonal basis in the space C[0, o).

The definitions in Eq.(35) are generalizations of the Pythagorean and Angle sum
identities for trigonometric functions to the case of cylinder functions J,| and Y/,|.
In particular, for the indexes v = 1/2+ k, k € Z the functions J;,| and Y], can be
explicitly represented in terms of sine and cosine functions.
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» We consider Up-and-Out Barrier Call option written on the underlying stock
which follows the CEV process with 0 < B < 1. To recall, after the change of
variables proposed in this paper is done, the problem transforms to the solution
of the Bessel PDE at the domain z € [y(7), o). Hence, in new variables the
Up-and-Out option transforms to the Down-and-Out option.
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» We consider Up-and-Out Barrier Call option written on the underlying stock
which follows the CEV process with 0 < B < 1. To recall, after the change of
variables proposed in this paper is done, the problem transforms to the solution
of the Bessel PDE at the domain z € [y(7), o). Hence, in new variables the
Up-and-Out option transforms to the Down-and-Out option.

» We approach at pricing the Up-and-Out barrier Call option in the CEV model
twofold. First, as a benchmark we solve the PDE in Eq.(2) by using a finite-
difference (FD) scheme of the second order in space and time. We use the Crank-
Nicolson scheme with few first Rannacher steps on a non-uniform grid compressed
close to the barrier level, see [Itkin 2017] .
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which follows the CEV process with 0 < B < 1. To recall, after the change of
variables proposed in this paper is done, the problem transforms to the solution
of the Bessel PDE at the domain z € [y(7), o). Hence, in new variables the
Up-and-Out option transforms to the Down-and-Out option.

» We approach at pricing the Up-and-Out barrier Call option in the CEV model
twofold. First, as a benchmark we solve the PDE in Eq.(2) by using a finite-
difference (FD) scheme of the second order in space and time. We use the Crank-
Nicolson scheme with few first Rannacher steps on a non-uniform grid compressed
close to the barrier level, see [ 1.

» Alternatively, we apply the method of Bessel potentials (BP) to solve the Bessel
PDE Eq.(5). For doing so, first we solve the Volterra equation in Eq.(19) where
the kernel is approximated on a rectangular grid M x M, and the integral is com-
puted using the trapezoidal rule. This implies solving the following system of lin-
ear equations

il = (1 + P)II¥]l- (36)
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» We consider Up-and-Out Barrier Call option written on the underlying stock
which follows the CEV process with 0 < B < 1. To recall, after the change of
variables proposed in this paper is done, the problem transforms to the solution
of the Bessel PDE at the domain z € [y(7), o). Hence, in new variables the
Up-and-Out option transforms to the Down-and-Out option.

» We approach at pricing the Up-and-Out barrier Call option in the CEV model
twofold. First, as a benchmark we solve the PDE in Eq.(2) by using a finite-
difference (FD) scheme of the second order in space and time. We use the Crank-
Nicolson scheme with few first Rannacher steps on a non-uniform grid compressed
close to the barrier level, see [ 1.

» Alternatively, we apply the method of Bessel potentials (BP) to solve the Bessel
PDE Eq.(5). For doing so, first we solve the Volterra equation in Eq.(19) where
the kernel is approximated on a rectangular grid M x M, and the integral is com-
puted using the trapezoidal rule. This implies solving the following system of lin-
ear equations

el = (F+ Pl (36)

> Here ||'¥|| is the vector of discrete values of ¥(7), T € [O,T(t)‘ 0] on a grid
t=

with M nodes, |[¢|| is a similar vector of ¢(7), / is the unit M x M matrix, and P
is the M x M matrix of the kernel values on the same grid. Note, that the matrix
P is lower triangular. Therefore, solution of Eq.(36) can be done with complexity
O(M?).
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In this test we use the explicit form of parameters r(t), q(t), o(t)
r(t) =rn—rn(a+t), q(t) =qo—qx(a+t), o(t) =0cova+t, (37)
where rg, qo, 00, Ik, gk, 0k are constants. We also assume ryp = qg, and H — const.
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In this test we use the explicit form of parameters r(t), q(t), o(t)

H(t) = ro— ri(a+¢),

q(t) = q0 — g(a+1),
where rg, qo, 00, Ik, gk, 0k are constants. We also assume ryp = qg, and H — const.

o(t) =o0pva+t,

The model parameters for this test are presented in Table 1:

Table 1: Parameters of the test.
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q(t) = qo — gx(a+1t),
where rg, qo, 00, Ik, gk, 0k are constants. We also assume ryp = qg, and H — const.

o(t) =o0pva+t,

The model parameters for this test are presented in Table 1:
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100

70

We run the test for a set of maturities T € [1/12,0.3,0.5, 1] and strikes

K € [59, 64,69, 74,79, 84].
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Up-and-Out barrier Call option price - BP

Figure 1: Up-and-Out barrier Call option
price computed by using the BP method.

Percentage difference of the Bl

nd FD solutions

Figure 2: % difference of prices com-
puted by using the BP and FD methods.

Table 2: Up-and-Out barrier Call option prices computed by using the BP and FD methods.

BP FD Difference %
K\T | 0.0833 0.3 0.5 1.0 0.0833 0.3 0.5 1.0 0.0833 0.3 0.5 1.0
59 | 9.3192 | 3.3642 | 1.6845 | 0.4976 | 9.2024 | 3.3554 | 1.6884 | 0.5175 | 0.2876 | 0.2604 | -0.2321 | -3.9899
64 6.2167 | 2.1795 | 1.0671 | 0.3038 | 6.2025 | 2.1831 | 1.0793 | 0.3252 | 0.2286 | -0.1654 | -1.1438 | -7.0291
69 3.8402 | 1.3219 | 0.6339 | 0.1731 | 3.8341 | 1.3319 | 0.6494 | 0.1931 | 0.1597 | -0.7624 | -2.4444 | -11.5443
74 2.1608 | 0.7350 | 0.3450 | 0.0891 | 2.1605 | 0.7477 | 0.3606 | 0.1061 | 0.0118 | -1.7293 | -4.5240 | -19.1029
79 1.0746 | 0.3612 | 0.1652 | 0.0388 | 1.0775 | 0.3736 | 0.1787 | 0.0522 | -0.2700 | -3.4102 | -8.1779 | -34.6241
84 0.4448 | 0.1462 | 0.0641 | 0.0121 | 0.4484 | 0.1561 | 0.0743 | 0.0216 | -0.7971 | -6.7649 | -15.9277 | -78.1360




» It can be seen that the agreement of both methods is good (less than 1%) if the
option price is not too small which occurs when the strike K is close to the bar-
rier or at high maturities. In this case, as this is seen from Table 2, the relative
difference becomes large, but the absolute difference of two methods is about one
cent, which is almost insignificant. Obviously, such cases are a challenge for any
FD method, as at t = T there is a jump in the initial condition at the boundary,
and the first derivative of the solution doesn't exists in this point.

Sep 22-23,2020 20 / 25



» It can be seen that the agreement of both methods is good (less than 1%) if the
option price is not too small which occurs when the strike K is close to the bar-
rier or at high maturities. In this case, as this is seen from Table 2, the relative
difference becomes large, but the absolute difference of two methods is about one
cent, which is almost insignificant. Obviously, such cases are a challenge for any
FD method, as at t = T there is a jump in the initial condition at the boundary,
and the first derivative of the solution doesn't exists in this point.

» As far as performance of both methods is concerned, to decrease the elapsed time
for the FD method instead of Eq.(2) we solve the corresponding forward PDE.
Therefore, prices of all options for a given set of strikes and maturities could be
obtained within one sweep. This also requires m x k integrations of the product of
thus found density function with the payoff function, where m is the total number
of maturities, and k is the total number of strikes. In this test the elapsed time
for the FD method is, on average, 140 msec.
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difference becomes large, but the absolute difference of two methods is about one
cent, which is almost insignificant. Obviously, such cases are a challenge for any
FD method, as at t = T there is a jump in the initial condition at the boundary,
and the first derivative of the solution doesn't exists in this point.

» As far as performance of both methods is concerned, to decrease the elapsed time
for the FD method instead of Eq.(2) we solve the corresponding forward PDE.
Therefore, prices of all options for a given set of strikes and maturities could be
obtained within one sweep. This also requires m x k integrations of the product of
thus found density function with the payoff function, where m is the total number
of maturities, and k is the total number of strikes. In this test the elapsed time
for the FD method is, on average, 140 msec.

» For the BP method, since the expression for ¢(7) in Eq.(17) is not known in
closed form, we compute this integral numerically by using the Simpson quadra-
tures. Nevertheless, to make the results accurate, we need to increase the number
of the grid nodes M. As compared with [ ] . where a simi-
lar expression for the Hull-White model could be computed in closed form, and
M = 20 provided a sufficient accuracy, here we need to take M = 100. Never-
theless, the elapsed time, on average, is 70 msec, i.e. twice faster than the FD
method for the forward equation.
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Here we present the results of the perfomance of GIT method. Our numerical scheme is
similar to that for the BP method: first we solve the Volterra equation and then
compute the value of the integrals using a trapezoidal rule. The comparison with FD
benchmark is presented in the following Figure and Table:
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similar to that for the BP method: first we solve the Volterra equation and then
compute the value of the integrals using a trapezoidal rule. The comparison with FD
benchmark is presented in the following Figure and Table:

Percentage difference of the GIT and FD solutions

Figure 3: Percentage difference of Up-
and-Out barrier Call option prices com-
puted by using the FD and GIT meth-
ods.

Difference %

[K\T | 00833 | 03 [ o5 [ 10 |
50 | 071108 | -0.2191 | -0.3634 | -0.7888
64 | 11101 | -0.2149 | -0.3654 | -0.7997
69 | 1.7729 | -0.20803 | -0.3556 | -0.8132
74 | 26313 | -0.1879 | -0.3318 | -0.8992
79 | 35572 | 0.1327 | 03120 | -1.0134
84 | 44718 | 0.0044 | -0.2848 | -1.1541

Table 3: Up-and-Out barrier Call option
prices computed by using the GIT and
FD methods.
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» It can be seen that this method produces very accurate results at high strikes and
maturities (i.e. where the option price is relatively small) in contrast to the BP
method. The solution obtained by GIT consists of the exponents proportional to
the time T, see [Carr, Itkin, and Muravey 2020] . Contrary, when the price is higher
(short maturities, low strikes) the GIT method is slightly less accurate than the
BP method, as in Eq.(19) the exponent is inversely proportional to 7.
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» It can be seen that this method produces very accurate results at high strikes and
maturities (i.e. where the option price is relatively small) in contrast to the BP
method. The solution obtained by GIT consists of the exponents proportional to
the time T, see [ ] . Contrary, when the price is higher
(short maturities, low strikes) the GIT method is slightly less accurate than the
BP method, as in Eq.(19) the exponent is inversely proportional to 7.

» This situation is well investigated for the heat equation with constant coefficients.
As applied to pricing double barrier options, it is described in [ ] . There
exist two representation of the solution: one - obtained by using the method of
images, and the other one - by the Fourier series. Despite both solutions are equal
as the infinite series, their convergence properties are different. In particular, the
Fourier method is superior when the difference between the upper H and lower L
barriers is small and the time is relatively large. And the image expansion should
be used otherwise.
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» This situation is well investigated for the heat equation with constant coefficients.
As applied to pricing double barrier options, it is described in [ ] . There
exist two representation of the solution: one - obtained by using the method of
images, and the other one - by the Fourier series. Despite both solutions are equal
as the infinite series, their convergence properties are different. In particular, the
Fourier method is superior when the difference between the upper H and lower L
barriers is small and the time is relatively large. And the image expansion should
be used otherwise.

» In this paper we come to a similar principle for the time-dependent problems, and
not just for the heat equation but also for the Bessel one. Thus, it is important
that both the BP and GIT methods don't duplicate but rather compliment each
other.
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maturities (i.e. where the option price is relatively small) in contrast to the BP
method. The solution obtained by GIT consists of the exponents proportional to
the time T, see [ ] . Contrary, when the price is higher
(short maturities, low strikes) the GIT method is slightly less accurate than the
BP method, as in Eq.(19) the exponent is inversely proportional to 7.

» This situation is well investigated for the heat equation with constant coefficients.
As applied to pricing double barrier options, it is described in [ ] . There
exist two representation of the solution: one - obtained by using the method of
images, and the other one - by the Fourier series. Despite both solutions are equal
as the infinite series, their convergence properties are different. In particular, the
Fourier method is superior when the difference between the upper H and lower L
barriers is small and the time is relatively large. And the image expansion should
be used otherwise.

» In this paper we come to a similar principle for the time-dependent problems, and
not just for the heat equation but also for the Bessel one. Thus, it is important
that both the BP and GIT methods don't duplicate but rather compliment each
other.

» It is also worth mentioning that in many situations the parameters of the model
are such that the boundary y(7) changes slowly with time, i.e. y(7) is almost
const. Accordingly, one don't need to solve the Volterra equation that makes the
algorithm about 2.5 faster.
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